The Cross-domain Heuristic Search Challenge (CHeSC 2011)

Organising Committee: Matthew Hyde and Gabriela Ochoa
Advisory Board: Edmund K. Burke, Michel Gendreau, Graham Kendall, Barry McCollum, Ender Ozcan, Andrew Parkes and Sanja Petrovic

http://www.asap.cs.nott.ac.uk/chesc2011
Hyper-heuristics

A hyper-heuristic is an automated methodology for selecting or generating heuristics to solve hard computational search problems

Challenge

- Can we develop the ability to automatically work well on different problems?
- Raising the level of generality
- Develop search methodologies that are more generally applicable

However ...

Current hyper-heuristic research

- Papers deal with very few problems: sometimes 2, rarely 3, ... mostly only 1!
- **Question**: Can we produce a benchmark to test the generality of heuristic search algorithms?

HyFlex (Hyper-heuristics Flexible framework)

- A software framework (benchmark library) for designing and evaluating general-purpose search algorithms
- Provides the *problem-specific* components
- Efforts focused on designing high-level strategies

3 The Cross-domain Heuristic Search Challenge (CHeSC 2011)
HyFlex: re-use and Interchange

Problem Domains
(problem specific)

1

2

...

n

HyFlex

Hyper-heuristics
(general purpose)

1

2

...

m

The Cross-domain Heuristic Search Challenge (CHeSC 2011)
Decide which heuristic, \(i \), to apply to which solution, \(j \), and where to store it in the list of solutions, \(k \). Based only on past history of heuristics applied and objective function values returned.

Hyper-heuristic

\[f(s_k) \]

Domain Barrier \((i, j, k) \)

Problem Domain

- Problem representation
- Problem instances
- Evaluation function \(f(s_k) \)
- \textit{List of solutions}
- Others…

HH framework: (Cowling P., Kendall G. and Soubeiga, 2000, 2001), (E. K. Burke et al., 2003)

The Cross-domain Heuristic Search Challenge (CHeSC 2011)
Overview of the problem domain modules

1. A routine to initialise (randomised) solutions
2. A set of heuristics to modify solutions
 a. **Mutational**: makes a random modification
 b. **Ruin-recreate**: partially destroy a solution and rebuild it using a constructive procedure
 c. **Local-search**: iterative procedures searching on the neighbourhood of solutions
 d. **Crossover**: takes parent solutions and produce offspring solution
3. A set of interesting instances, that can be easily loaded \((\text{LoadInstance}(i))\)
4. A population or list of solutions
Four Problem Domains

- MAX-SAT
- Flow Shop
- Personnel Scheduling
- Bin Packing

The Cross-domain Heuristic Search Challenge (CHeSC 2011)
Personnel Scheduling

Instances: Wide range of data sets (Industry, Academia, +10 countries)

Low level heuristics: 12, different types. LS based on new, horizontal and vertical moves

<table>
<thead>
<tr>
<th>Instance</th>
<th>Size</th>
<th>Shifts</th>
<th>Days</th>
<th>LS Moves</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCV-A.12.1</td>
<td>1294</td>
<td>12</td>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>BCV-A.12.2</td>
<td>1953</td>
<td>12</td>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>ORTEC01</td>
<td>270</td>
<td>16</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>ORTEC02</td>
<td>290</td>
<td>16</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>GPost</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>GPost-B</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>QMC-1</td>
<td>16</td>
<td>19</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>QMC-2</td>
<td>29</td>
<td>19</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>Ikegami-2Shift-DATA1</td>
<td>0</td>
<td>28</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Ikegami-3Shift-DATA1</td>
<td>6</td>
<td>25</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Ikegami-3Shift-DATA1.1</td>
<td>13</td>
<td>25</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Ikegami-3Shift-DATA1.2</td>
<td>12</td>
<td>25</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Millar-2Shift-DATA1</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Millar-2Shift-DATA1.1</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Valouxis-1</td>
<td>20</td>
<td>16</td>
<td>3</td>
<td>28</td>
</tr>
</tbody>
</table>

Horizontal swap: move shifts in single employee’s work pattern
The “cross-domain” competition

- Conduct a competition (“cross-domain” challenge):
 - Using HyFlex
 - **Winner**: algorithm with best overall performance across all of the different domains
 - The *Decathlon Challenge* of search heuristics

- Why run a competition?
 - Competitions appear to help advance research
 - **Success examples**: Timetabling, Nurse Rostering, Planning, SAT, CSP, RoboCop, ...
 - Bring together researchers from sub-fields of CS, AI and OR
 - Achieve a deeper understanding of the design principles of hyper-heuristics across a wide set of problems
Scoring System

Instances:

SAT Instance 1:
HH1 – 34
HH2 – 23
HH3 – 27
HH4 – 10
HH5 – 30
...

MAX-SAT

Flow Shop

Personnel Scheduling

Bin Packing

Hidden Domain

The Cross-domain Heuristic Search Challenge (CHeSC 2011)
Scoring System

Formula 1

- For each instance (race): algorithms will be ranked by the best objective function value (single run)
- The top eight ‘drivers’ score points
- Ties: Points to the relevant positions added and shared equally
Interesting Instances

And not so interesting...

The Cross-domain Heuristic Search Challenge (CHeSC 2011)
The Cross-domain Heuristic Search Challenge (CHESC 2011)
The Java Software

HyperHeuristic abstract class

ExampleHyper-Heuristic1.java
ExampleHyper-Heuristic2.java
ExampleHyper-Heuristic3.java
Your Hyper Heuristic??
The Cross-domain Heuristic Search Challenge (CHeSC 2011)

Personnel Scheduling

Example Run 1
(with main method)

Your Hyper Heuristic??

- Set problem instance
- Set time limit
- Run experiment
The Cross-Domain Heuristic Search Challenge

Develop the most general high level strategy

Your Hyper Heuristic??

MAX-SAT
Personnel Scheduling
Hidden Domain 1
Flow Shop
Bin Packing
Hidden Domain 2

...
Questions?

Important Dates:

May 15, 2011: Registration deadline.

http://www.asap.cs.nott.ac.uk/chesc2011