Automated Heuristic Design

Gabriela Ochoa, Matthew Hyde & Edmund Burke
Automated Scheduling, Optimisation and Planning (ASAP) Group, School of Computer Science, The University of Nottingham
{gxo, mvh}@cs.nott.ac.uk

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.
Agenda

❖ First Section: Introduction
• General introduction and motivation
• What is a hyper-heuristic?
• Classification of hyper-heuristic approaches

❖ Second Section: Heuristic Selection Methodologies
• A Constructive hyper-heuristic: Graph-based hyper-heuristic
• A Perturbative hyper-heuristic: Tabu-search hyper-heuristic
• HyFlex and the Cross-domain Heuristic Search Challenge
• Conclusion and Future Work

❖ Third Section: Heuristic Generation Methodologies
• Introduction
 – Hyper-heuristic Definition
 – What’s the Point?
• Case Study 1: Max-SAT
• Case Study 2: Bin Packing
• Conclusion
Automated Heuristic Design

- Search and optimisation problems are everywhere, and search algorithms are getting increasingly powerful
- They are also getting increasingly complex
- Only autonomous self-managed systems that provide high-level abstractions can turn search algorithms into widely used methodologies

Research Goals:
- Reduce the role of the human expert in the process of designing optimisation algorithms and search heuristics
- Software systems able to automatically tune, configure, generate and design optimisation algorithms and search heuristics.
- Self-tuning, self-configuring and self-generating search heuristics
Automated Heuristic Design: Several Approaches

- **Online approaches**
 - Self-tuning and self-adapting heuristics on the fly, effectively learning by doing until a solution is found
 - **Examples:** adaptive memetic algorithms, adaptive operator selection, parameter control in evolutionary algorithms, adaptive and self-adaptive search algorithms, reactive search

- **Offline approaches**
 - Learn, from a set of training instances, a method that would generalise to unseen instances
 - **Examples:** automated algorithm configuration, meta-learning, performance prediction, experimental methods, SPO

- **Hyper-heuristics (offline and online)**
Motivation

The “Up the Wall” game

- We have a problem (e.g. exam timetabling) and a set of benchmark instances
- We develop new methodologies (ever more sophisticated)
- Apply methodologies to benchmarks
- Compare with other “players”
- The goal is to “get further up the wall” than the other players

Consequence: Made to measure (handcrafted) Rolls-Royce systems

e.g. Exam Timetabling
Motivation

The “Many Walls” game

- Can we develop the ability to automatically work well on different problems?
- Raising the level of generality
- Still want to get as high up the wall as possible ... BUT...
- We want to be able to operate on as many different walls as possible

- Consequence: Off the peg, *Ford* model

One method that operates on several problems
Motivation

- Develop decision support systems that are \textit{off the peg}
- Develop the ability to automatically work well on different problems

Research challenges

- Automate heuristic design
 - Now made by human experts
 - Not cheap!
- How general we could make hyper-heuristics
 - No free lunch theorem
Motivation

The General Solver

Doesn’t exist....

Significant scope for future research

More General

These situations exist

Problem Specific Solvers
What is a Hyper-heuristic?

'standard' search heuristic

Operates upon

potential Solutions
Hyper-heuristics:
“Operate on a search space of heuristics”

- 'standard' search heuristic
 - Operates upon
 - potential Solutions

- hyper-heuristic
 - Operates upon
 - heuristics
 - Operates upon
 - potential Solutions
What is a hyper-heuristic?

Recent research trend in hyper-heuristics

- Automatically *generate* new heuristics suited to a given problem or class of problems
- Combining, i.e. by GP, *components* or *building-blocks* of human designed heuristics

New definition:

A hyper-heuristic is an automated methodology for selecting or generating heuristics to solve hard computational search problems

Origins and early approaches

Term *hyper-heuristics*
- First used 1997 (Dezinger et. al): a protocol for combining several AI methods in automated theorem proving
- Independently used in 2000 (Colwing et. al): ‘heuristic to choose heuristics’ in combinatorial optimisation
- First journal paper (Burke et. al, 2003)

The ideas can be traced back to the 60s and 70s
- Automated heuristic sequencing (early 60s and 90s)
- Automated planning systems (90s)
- Automated parameter control in evolutionary algorithms (70s)
- Automated learning of heuristic methods (90s)
Classification of hyper-heuristics

Search paradigms

Perturbation
- **Search space:** complete candidate solutions
- **Search step:** modification of one or more solution components
- **TSP:** 2-opt exchanges

Construction
- **Search space:** partial candidate solutions
- **Search step:** extension with one or more solution components
- **TSP:** Next-neighbour
Classification of hyper-heuristics (nature of the search space)

Hyper-heuristics

Heuristic Selection
- Construction heuristics
- Perturbation heuristics

Heuristic generation
- Construction heuristics
- Perturbation heuristics

Fixed, human-designed low level heuristics

Heuristic components
Classification of hyper-heuristics (source of feedback during learning)

Online
- Learning while solving a single instance
- Adapt
- **Examples**: reinforcement learning, meta-heuristics

Offline
- Gather knowledge from a set of training instances
- Generalise
- **Examples**: classifier systems, case-based, GP
Section 2: Heuristic Selection Methodologies

A constructive Hyper-heuristic
Graph-based hyper-heuristics

- A general framework (GHH) employing a set of low level constructive graph colouring heuristics

- Low level heuristics: sequential methods that order events by the difficulties of assigning them
 - 5 graph colouring heuristics
 - Random ordering strategy

- Applied to exam and course timetabling problem

Examination timetabling

A number of exams \((e_1, e_2, e_3, \ldots)\), taken by different students \((s_1, s_2, s_3, \ldots)\), need to be scheduled to a limited time periods \((t_1, t_2, t_3, \ldots)\) and certain rooms \((r_1, r_2, r_3, \ldots)\).

Hard Constraints
- Exams taken by common students can’t be assigned to the same time period
- Room capacity can’t be exceeded

Soft Constraints
- Separation between exams
- Large exams scheduled early
How can we model this problem?

- There are 7 exams, e1 ~ e7
- 5 students taking different exams
 - s1: e1, e2, e4
 - s2: e2, e3, e4
 - s3: e3, e4, e5
 - s4: e4, e5, e6
 - s5: e7

Objective: assign colours (time periods) to nodes (exams), adjacent nodes with different colour, minimising time periods used
Low-level heuristics

Order events by how difficult to schedule them

<table>
<thead>
<tr>
<th>Graph Heuristics</th>
<th>Ordering strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largest degree (LD)</td>
<td>Number of clashed events</td>
</tr>
<tr>
<td>Largest weighted degree (LW)</td>
<td>LD with number of common students</td>
</tr>
<tr>
<td>Saturation degree (SD)</td>
<td>Number of valid remaining time periods</td>
</tr>
<tr>
<td>Largest enrolment (LE)</td>
<td>Number of students</td>
</tr>
<tr>
<td>Colour degree (CD)</td>
<td>Number of clashed event that are scheduled</td>
</tr>
<tr>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Random ordering (RO)</td>
<td>Randomly</td>
</tr>
</tbody>
</table>

Automated Heuristic Design
Graph-based hyper-heuristics

Automated Heuristic Design
Graph-based hyper-heuristics

Automated Heuristic Design
Graph-based hyper-heuristics

events

| e2 | e4 | e5 | e7 | e8 | e11 | e12 | ...

heuristic list

SD SD LD CD LE SD SD LW SD LD CD RO ...

order of events

| e5 | e32 | e19 | e22 | e13 | e31 | e12 | e7 | e2 | e15 | e27 | e12 | ...

slots

| e1 | e3 | e6 | e19 | e26 | e25 | e28 | e17 | e10 | e5 | e13 | e32 | e19 | e13 |
Graph-based hyper-heuristics

- Tabu Search and other meta-heuristics (VNS, ILS) used to search the heuristic search space
- **Objective function**: quality of solutions (timetables) built by the corresponding heuristic list
Heuristic Selection Methodologies

- The domain barrier
- A perturbative hyper-heuristic: Tabu-search hyper-heuristic
- HyFlex and the Cross-domain Heuristic Search Challenge
Decide which heuristic, i, to apply to which solution, j, and where to store it in the list of solutions, k. Based only on past history of heuristics applied and objective function values returned.

Problem Domain

- Problem representation
- Problem instances
- Evaluation function $f(s_k)$
- **List of solutions**
- Others…

Hyper-heuristic

- H_1, H_n
- H_2, …

Domain Barrier

$f(s_k)$

HH framework: (Cowling P., Kendall G. and Soubeiga, 2000, 2001), (E. K. Burke et al., 2003)

Automated Heuristic Design
Tabu-search hyper-heuristics

- Heuristics selected according to learned ranks (using reinforcement learning)
- Dynamic tabu list of heuristics that are temporarily excluded from the selection pool

Later combined with SA acceptance

Each heuristic k is assigned a rank r_k initialised to 0 and allowed to increase and decrease within interval $[r_{\text{min}}, r_{\text{max}}]$.

Tabu search hyper-heuristics

- Select highest-ranking non-tabu heuristic and apply it once
 - Improvement in objective function > 0: Increase rank
 - Improvement in objective function $= 0$: Decrease rank
 - Improvement in objective function < 0: Decrease rank
 - Empty tabu list
 - Include highest-ranking heuristic in tabu list on a 1st in, 1st out basis
 - Check stopping condition
 - Does not hold: STOP & output best solution (s)
 - Holds: Continue

Automated Heuristic Design
HyFlex (Hyper-heuristics Flexible framework)

- **Question**: Can we produce a benchmark to test the generality of heuristic search algorithms?

- A software framework (problem library) for designing and evaluating general-purpose search algorithms

- Provides the *problem-specific* components

- Efforts focused on designing high-level strategies

HyFlex: a benchmark for cross-domain heuristic search

- Six different domains, hard combinatorial problems, interesting and varied set of operators and instances
- Implemented using the same software framework (common software interface)
- A single high-level strategy can operate and solve all the domains
- What are the principles and design strategies of successful cross-domain search heuristics?

http://www.asap.cs.nott.ac.uk/chesc2011/
Overview of the problem domain modules

1. A routine to initialise (randomised) solutions
2. A population or list of solutions
3. A set of heuristics to modify solutions
 a. Mutational: makes a random modification
 b. Ruin-recreate: partially destroy a solution and rebuild it using a constructive procedure
 c. Local-search (hill-climbing): iterative procedures searching on the neighbourhood of solutions for non-worsening solutions
 d. Crossover: takes parent solutions and produce offspring solution
4. A set of interesting instances, that can be easily loaded
“Civilization advances by extending the number of important operations which we can perform without thinking about them.”

Alfred North Whitehead, *Introduction to Mathematics (1911)*

Crowdsourcing: “the act of taking a job traditionally performed by a designated agent (usually an employee) and outsourcing it to an undefined, generally large group of people in the form of an open call”.

Jeff Howe, Wired Magazine, 2006
Conclusions of 1st Section

A hyper-heuristic is an automated methodology for selecting or generating heuristics to solve hard computational search problems.

- **Main feature:** search in a space of heuristics
- **Term used for** ‘heuristics to choose heuristics’ in 2000
- **Ideas can be traced back to** the 60s and 70s
- **Two main type of approaches**
 - Heuristic selection
 - Heuristic generation
- **Ideas from online and offline machine learning are relevant,** as are ideas of meta-level search
Future work

- **Generalisation**: By far the biggest challenge is to develop methodologies that work well across several domains.

- **Foundational studies**: Thus far, little progress has been made to enhance our understanding of hyper-heuristic approaches.

- **Distributed, agent-based and cooperative approaches**: Since different low-level heuristics have different strengths and weakness, cooperation can allow synergies between them.

- **Multi-criteria, multi-objective and dynamic problems**: So far, hyper-heuristics have been mainly applied to single objective and static problems.
References: Hyper-heuristics

References: Automated Heuristic Design

This a small sample of books, survey papers, and other journal papers:

Section 3
Heuristic Generation Methodologies
Outline

- Introduction to this section
 - Hyper-Heuristic Definition
 - What’s the Point?
- Case Study 1: SAT
- Case Study 2: Bin Packing
- Conclusion
“A hyper-heuristic is an automated methodology for selecting or generating heuristics to solve hard computational search problems”
Two Types of Hyper-Heuristic?

A Hyper Heuristic Model:

Hyper Heuristic to Generate Heuristics

- Heuristics
 - Problem
 - Hyper-Heuristic
 - Heuristic Defined by the
 - User
 - Domain-Specific Heuristic Defined by the
 - Hyper-Heuristic

Heuristics

Heuristic

Heuristic

Heuristic

Heuristic

Heuristic

Problem
What’s the Point?

- We spend a lot of time testing, and fine tuning, solution methods.
- They are usually specialised to a particular problem instance set, with certain characteristics.
- Automating this creative process can potentially save time and/or effort.
- Humans still have a creative role in heuristic generation, but the idea is that more of the process is automated.
What’s the Point?
Heuristic Generation Methodologies

Case Study 1
Evolving Heuristics for SAT
Bader-el-Den and Poli, 2007
Based on Fukunaga, 2004, 2008
SAT local search heuristics can be evolved from a set of components, obtained by analysing existing heuristics from the literature
Evolving Heuristics for SAT

- Make a boolean expression true
- \((\neg A \lor B \lor C) \land (B \lor \neg C \lor E) \land (\neg B \lor A \lor \neg D) \land (\ldots) \land (\ldots) \ldots\)
- Hundreds/thousands of variables and clauses
- Local search heuristics iteratively choose a variable to flip.
Existing Heuristics for SAT

- **GSAT**
 - Flip variable which removes the most broken clauses (highest ‘net gain’)

- **HSAT**
 - Same as GSAT, but break ties by choosing the variable that has remained ‘unflipped’ for the longest

- **HARMONY**
 - Pick random broken clause BC. Select the variable V in BC with highest net gain, unless V has been flipped most recently in BC. If so, select V with probability p. Otherwise, flip variable with 2nd highest net gain
Existing Heuristics for SAT

- **GWSAT**
 - With probability 0.5, apply GSAT
 - Otherwise flip a random variable in a random broken clause.
They define a grammar, which can represent many heuristics from the literature, and new heuristics.
Evolving New SAT Heuristics

- **Flip**
- Maximum Net Gain
 - IF
 - 20% Broken Clause
 - All Clauses
 - Tie:
 - Age
 - All Clauses

<table>
<thead>
<tr>
<th>start</th>
<th>FLIP v</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>RANDOM l</td>
</tr>
<tr>
<td></td>
<td>MAX_SCR l</td>
</tr>
<tr>
<td></td>
<td>IFV prob, v, v</td>
</tr>
<tr>
<td></td>
<td>MIN_SCR l</td>
</tr>
<tr>
<td></td>
<td>MAX_AGE l</td>
</tr>
<tr>
<td>l</td>
<td>ALL</td>
</tr>
<tr>
<td></td>
<td>RAND_USC</td>
</tr>
<tr>
<td></td>
<td>IFL prob, l, l</td>
</tr>
<tr>
<td></td>
<td>SCR_Z l</td>
</tr>
<tr>
<td>op</td>
<td>TIE_RAND</td>
</tr>
<tr>
<td></td>
<td>TIE_SCR</td>
</tr>
<tr>
<td>prob</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>
Lessons – Case Study 1

- Existing local search heuristics were broken down into components
- These heuristics return a variable to flip, not a value or ‘score’
- Local search heuristics evolved here, rather than constructive heuristics
Heuristic Generation Methodologies

Case Study 2
CASE STUDY 2

- One Dimensional Bin Packing
- Burke, Hyde, Kendall, and Woodward 2007
- Heuristics can be evolved that are specialised to different types of problems
- Extended to two dimensional packing heuristics in Burke, Hyde, Kendall, and Woodward 2010
The Bin Packing Problem

- Pack all the pieces into as few bins as possible
The Bin Packing Problem Set

- Online
- 7 problem classes
- Bin Capacity 150
- 120 items

7 Training sets
7 Validation sets
GP Parameters Outline

- 50 generations
- 90% crossover
- 10% reproduction

- Functions and terminals:
 - Bin Capacity
 - Bin Fullness
 - Piece Size
 - +, -, *, %, ≤

- 1000 population
- Fitness proportional selection
Evolving Bin Packing Heuristics
Illegal Heuristics

- Permitted
- High penalty
- The system evolves an understanding of the rules
Results - Specialisation of Heuristics

![Diagram showing specialisation of heuristics]

- super-super-class
- super-class
- class
- Class C_{30-49}
- Class C_{70-89}
Results - Specialisation of Heuristics

![Diagram showing the specialisation of heuristics with classes and super-classes. The diagram has a top section labeled 'super-super-class', with a middle section divided into 'super-class' and 'class' categories, and a bottom section also divided into 'class' categories. Arrows indicate the flow or relationship between these classes.](image-url)
Results - Robustness of Heuristics

- all legal results
- some illegal results
Example of an evolved heuristic

- Heuristic evolved on instances with the widest distribution
- Tested on instances with piece sizes between 10-29

The heuristic performs very badly, by putting just one piece into each bin.
Example of an evolved heuristic

- The heuristic always scores the empty bin as the best

\[
\frac{2S + F}{S + F} + \frac{C}{\left(\left(\frac{F}{C}\right) \leq (2C - F)\right)} + (C - S - F)
\]
Lessons – Case Study 2

- Heuristics can be **specialised** to specific types of sub problem
- Heuristics may not work at all on new instances if they contain different distributions of pieces
- The **training set must be carefully chosen** to ensure it represents every type of problem that the heuristic must solve in the future
Conclusion

- Presented three case studies which highlight different research issues
- Humans will (always?) still have a role in heuristic generation
- The hyper-heuristic automates the process of combining elements that have been chosen by humans
- Our role moves from designing heuristics to designing the search space in which the best heuristic is likely to exist
References

- Alex S. Fukunaga. 2008. Automated discovery of local search heuristics for satisfiability testing. Evolutionary Computation 16(1) p31-61

References

- Hyper-heuristic bibliography online
 - http://www.cs.nott.ac.uk/~gxo/hhbibliography.html

- The Cross-domain Heuristic Search Challenge (CHeSC)
 - http://www.asap.cs.nott.ac.uk/chesc2011/